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The solution is given of a number of problems on the elastic equilibrium of an 
infinite wedge with a nonsymmetric notch at the apex by using the method elu- 

cidated in Cl]. The solution is obtained in the form of the Cauchy-type integrals 
for various homogeneous conditions on the side faces of the wedge. 

The problem of representing 2 x 2 matrices given on a curve L in the complex 
plane and belonging to a certain class is posed and solved in closed form in 

b. 33 in the form of the product of 2 x 2 matrices holomorphic to the left and 
right of .L ,whose boundary conditions on L commutate. 

A simpler solution of the mentioned homogeneous Hilbert problem, more con- 
venient for app~cations, is given in [l+J. It is also shown here that the problem 
of elastic equilibrium of an infinite wedge with nonsymmetric notch at the apex 

and stress-free faces reduces to an inhomogeneous Hilbert problem for a two- 

dimensional piecewise-holomorphic vector, where the matrix factor belongs to 
the above-mentioned class in three cases. 

1. Raduction of the problem of elrttlc equilibrium of A wedge 
with a notch to 4x1 in~omogenaous Htlbert problem, ~tanin~nite 
triangular wedge occupy the domain 0 < cp < 8 in a plane with the polar coordinates 

r-, g, . Values of the stresses oo, T,.~ are given on the face 9 = 0, but on the face 

cp =ZZ 6 we consider homogeneous conditions of one of the following kinds : 
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(1) 
(2) 

to be satisfied. 

Let us introduce the 

Q(F) = 
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bp = z, = 0, (3) u* = bt, = 0 

u, = u, = 0, (4) u, = 6, = 0 

following two-dimensional vectors and their Mellin transforms: 

1% (r, 0); tr, (r, o>, 0’ (p) = 1 rpo (F) dF (1.1) 
0 

w (r) = -J$ (r, 0); -$- (r, O)} 7 W* (p) = jf F*W (r) dF (1.2) 
1 

For conditions (1) - (4), we obtain relationships between the vector-transforms (j = 

= l-4 , respectively) 

‘!rEW” (P) = [C + Ar’Gj (~9 e)] co (p) (4.3) 

0 - l/4 (I - v) 
‘/a(l-v) 0 

Al (p, 0) = pa sin’ 0 - sin’ p0 

a$ = -& p sin 0:cos 0 + sin p0 cos p0, b? = -p (1 F p) sin’ 8 
AZ (p, 0) = pa sin2 0 + x sir? p6 - V, (x + 1)s 

a,f = _+ p sin 8 cos 8 - x sinp 0 cosp0 

b*, = - p (p f 1) sina 0 - l/,(x% - 1) 

AS (p, 0) = p sin 28 f sin 2~0 
a$ = + cos 20 - cos 2pe, - b$ = (- 1 -t-p) sin28 

A, (p, 6) = p sin 28 - sin 2~0 

a$ = + co9 28 + co9 2~0, b,“r = (- 1 + p) sin 28 

Here E and v are the elastic modulus and Poisson’s ratio, x is the coefficient in the 
Kolosov-Muskhelishvili formulas, and only the upper or lower signs are taken in the ex- 

pressions for ajf and by* . 
Now, let there be a notch (0,1) on the v = 0 line of the wedge - 0, < cp ,( 0, 

on whose boundaries equal and opposite stresses are applied. Conserving the previous 
notation a(r) and 8 (p) for the original and the transform of the two-dimensional stress 
vector (1.1) on the notch line cp = 0, let us introduce still another two-dimensional 
vector of the mutual displacement of the edges u (r) and its derivative u (r) by means 
of the formulas 

27 (r) = {no (r, +O) - up (r, --O), u, (r, +O) - n, (r, -0)) (1.4) 
u (r) = v’ (r) = w (r, +O) - w (r, - 0) (1.5) 

The corresponding Mellin transforms are 

no (P) = TF’o (r) dr = 1 F% (F) dF (l-6) 
0 0 
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u’(p) = $ r’pu (r) dr = J rpu (r) fir 
0 
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u-7) 

If the j th of the conditions (1) - (4) is satisfied on the face cp = 8, and the k th on 
the face cp = -8,s. we obtain by virtue of (1.3) and (1.5) : 

‘/@f (P) = Gjk (Pi &mea) 6’ (P) W) 

Gjk (P; &,e,) -L AT1 (ZJ, 0,) Gj (P, 01) - A;;’ (Pa - 0%) Gk (P, - 4) (f.9) 

Let us represent the vector Mellin transform o” (p) as 
m 

6’ (P) = oO+ (P) + oTP)* oO+ (p) = f rpo (r) dr, a’- (p) = J rpa (r) dr (1.10) 

Here a”‘(p) is holomorphic in the half-Llane Rep > - 
1 

‘11 and a”- (p) in the half-plane 
Rep < 0, where a”+ (p) is given. By virtue of (1.7), the transform u” (p) is holomor- 

phic in the half-plane Rep > - ‘/,.Hence, an expression such as 

Q (P) = 
I 

‘14 Eu’ (P), Rep > 61 
6*-(p), Rep < 60 

(1.q 

is a piecewise-holomorphic two-dimensional vector with the line of jumps Rep = 60, 
where 60 is an arbitrary real number from the interval (-l/,, 0). 

By virtue of (1.8) the relationship 

‘?+ @) = %c (t; e,, 0,) Cp- (t) + q(t) 9 (t) = Gja (1; ei, ea) a”+ (t) (1.12) 

is satisfied on the contour defined by the equation Rep = 8, . Here cpf (t) denote the 

limit values of the piecewise-holomorphic vector t# (p) on L from the left and right, 

respectively. 

Since ‘II, (t) is a known vector, the relationship (1.12) is an inhomogeneous Hilbert 
problem, which is solved in closed form if the solution of the corresponding homogeneous 

problem is known 

X+ (t) [X- it)]-’ = Gjk (t; 8,, 0,) (1.13) 

where X b) is a piecewise-holomorphic matrix with the line of jumps L. 

2. Schemer of the work of a wedge in which the mrtrior6 
commutate. As is known [l -33, the solution of the problem (1.13) satisfies the 
additional condition 

x+ (t) [X- @)I-’ = 1x- @)I-lx+ (t) 

in one case, and admits of solution in the form of Cauchy-type integrals. 
In order for the case under consideration to hold, it is necessary to satisfy the follow- 

ing condition [l] : 
dev Gjk (t; %, 6~) = c (t; %, %) Qjk (t; %, 0,) 

dev Gjk (t; 8,. cl,) = Gjk (t; 81, e,) - b (C e,, e,) I 
(2.4) 

Here b (t; Cl,, 8,) is semi-trace of the matrix Gjk (t; 8,, e,), 1 is the unit matrix 

1 x 2, c (t; e,, e,) is an arbitrary coefficient, and Qjh (t; 81, 0,) is the boundary value 

on L of a 2 x 2 matrix of the form 
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(2.2) 

where I (p), m+ (p), m- (p) are polynomials in p. 
If the number of zeroes of odd multiplicity of the polynomial (1’ -t- m?i-z-) @), each 

taken once, does not exceed two, then (2.1) is also a sufficient condition; otherwise add- 

itional analysis is required [l]. 
From (1.9) we have directly 

dev Gjk (Pi %, es> = 4j (P, or) Qj (P, 01) - qk (P, - 0,) Qk (p, - 0,) (2.3 ) 

q1 (P, 0) = A;l (p, 6) p sin 8, II = cos 8, mf = (-1 & p) sin 8 (2.4) 

qa (P, e) = Ai’ (p, e), I, = p sin 8 cos 8, rn$ = p (k I - p) sins e - 

- V4 (xa - 1) (2.5) 
q3 (p, e) = A;1 (p, e), l3 = cog 28, mf = (-i-p - 1) sin 28 (2.6) 

Ql (P, e) = Ai1 @, e), 1, = cos 28, rn$ = (,p - 1) sin 28 (2.7) 
Here only the upper or lower signs are taken in the formulas for mJ , The matrices Qj 

(P, 0,) andQk h - 0,) in the right side of (2.3) have polynomial elements, where 

these elements do not simultaneously all vanish identically with respect to p for any 

values of the parameters Or, 8,. 
If the identity 

qk (P, - 6,) = 0 (2.8) 

is staisfied, f hen setting 

+; el,%> = qj(l; &es), Qjk (Pi e17 fb) = Qj @, 0,) (2.9) 

we obtain (2. l), (2.2) from (2.3). 
Analogously to the above, if the identity 

Qk (P, - 0s) = Qj (P, e,w (P; he,) (2.10) 

is satisfied, where h (p; 8,, es) is an arbitrary scalar factor, then assuming 

c (t; or, 0s) = Qj (4 0,) - h (t; e,, e,) qK (4 - e,), Qjk (pi he,) = Qj @, 4) (2.11) 

we again obtain (2.1). (2.2) from (2.3). 
There results directly from (2.4) - (2.7) that condition (2. 8) is satisfied only when 

k = 1, 8, = n,i.e.. in the case of a notch on the continuation of the stress-free 

side of the half-plane enveloping the wedge under arbitrary boundary conditions on its 
opposite side (diagrams I-# in Fig. 1; th e notations (I)-(4)of the boundary conditions 

mentioned at the beginning of Sect. 1 are given in the right lower portion of the figure). 
Now, let us study in which cases the identity (2.10) is satisfied. Henceforth h = h 

(P; e,, es) throughout. 
Initially let us put j = 1, releasing the side cp = 8, from stresses 

9, + 8, = sr, h = -1; 8, + 8, = ~TC, h = 1 for k = 1 (2.12) 
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It hence follows that the identity (2.10) is satisfied for a notch on the boundary of the 
half-plane, and for a semi-infinite notch with a breakpoint (diagrams 6,6). These dia- 

grams, exactly as the case j = k z= 1, 0a = x (diagram I), have been examined in 
[l]. Let us note that since the diagonal elements of the matrices Qs. (p, e,) and 

Fig. 1. 

Qtk,-- 0s) are constants, the factor h cannot depend onp. Equating elements of the 
first rows of the matrices Qr (p,- 0,) and hQ, (p, O,), we easily see that h = _t 1, 
and this result is valid for all the diagrams considered below. 

If k = 2, the identity (2.10) is not satisfied for any values of the angles 0, and 9, 

If k = s(diagrams 7,8) or k = 4 (diagrams 9,10),we have 

0i + 28, = x, h = -1; t& + 20, = 2n, h = i (2.13) 

Now, putting j = 2, and fixing the side r+ = 8, rigidly, we have 

a) e, + 8, = IC, h = 1; (b) 0, + 0, = 2x, h = 1 for k=2 (2.14) 

Condition (2.14a) (diagram 22) corresponds to a notch on the rigidly fixed boundary 
of the half-plane. 

Condition (2.14b) (diagram 12) defines an arbitrarily oriented notch at the end of an 
intinitely rigid soldered plate. 

If k = 1, 3, 4, the identity (2.10) is not satisfied for any value of the angles 8, and 

8 
‘assuming contact with an absolutely rigid smooth profile at the side rp = 61 (j = 3), 

we obtain relationships between the angle Qr and 8, which assure compliance with the 

identity (2.10) and are different from those examined earlier, and we have 

a) 0, + 8, = V,n, h = - 1; b) 8t + 8s = rt’, h = 1 (2.15) 

c) 0, + 0, =3/g, h=-1; d) 8, + 0, = 2x, h = i for k=3 

In the first case (diagram 13) we have a notch in a rectangular wedge, compressed 
by two rigid stamps without friction, in the second case (diagram.~4) we have a notch 
at the boundary of the half-plane in the presence of a rigid stamp without friction, in 
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the third case (diagram 15) we have a notch at the point of a rectangular rigid stamp 
without friction, and in the fourth case (diagram 26) a notch at the end of an infinitely 

thin and absolutely rigid smooth “knife-blade “. In all cases it is assumed that the size 
of the stamp or the knife considerably exceeds the length of the notch. 

If k = 4, then the relationships (2.15 a - d) again hold, and the corresponding dia- 
grams 17-20 * are characterized by the fact that contact with a rigid smooth profile is 

realized on one of the wedge sides, while contact with a body deprived of bending stiff- 
ness and possessing infmite tensile stiffness is realized on the other, 

Finally, putting] = k = 4,we again obtain the relationships (2.15 a - d). The corres- 

ponding diagrams 21-26 are different in that contact conditions with a body deprived of 
bending stiffness and possessing infinite tensile stiffness are realized on both sides of the 

wedge. 
Such are the fundamental diagrams, where (2.1). (2.2) are satisfied on the sides of 

a wedge under the homogeneous boundary conditions (1) - (4). 
Let us enumerate several derived diagrams. 

The state of stress of a body with a pair of converging notches of identical length 

(diagram I) can be obtained by adding the states of stress for diagrams 14 and 22. 
The state of stress of a half-plane with a pair of symmetrically disposed notches and 

the boundary conditions (3), (4) on the surface (diagrams ZZ-ZZZ) can be obtained by 

superposing the diagrams 13, 17, 21 
The problem of the state of stress of a body with a pair of notches of identical length 

dividing each other in half (diagram Iv) also reduces to synthesis of diagrams 13, 17, 21. 

Finally, the problem of the state of stress of a haif-plane enveloping a wedge with 
the wedge faces free of stress resultants and a pair of notches of identical length on the 

continuation of the faces (diagram v) reduces to the synthesis of diagrams 7, 9 
Let us note that a diagram of the work of a body with notches inverted relative to the 

origin, i.e. , semi-infinite (one or more), can be compared to each of the fundamental 

and derived diagrams considered above. The matrix equation (1.13) and the procedure 
for its solution are completely identical for the original and composite diagrams. 

3, Gsaerrl rolution of the problem for the fundrmantrl 
dtrgrrms, Letting hr,s (p) denote the characteristic functions (eigennumbers) of the 

matrix Gjk@; e,, es)* let us introduce the following parameters of the given matrix: 

A (p) = MP) % 6~): E (p) = l/z In Ih, (p) A,-f cp>l (3.1) 

B(p) = [f (p)l-“z Qjk (pi h %), f fp) = b (da + mt b) m- @) 

Here A tP), 6 (P) and B (p) are the determinant, exponent and commutant of the 

matrix Gjk (p; e,, 0,) ~11. 
Since the polynomial f (p) has no multiple roots, the solution of the problem (1.13) 

is given by the following formulas [I]: 

A (p) x (p) = 1 ch [(P B) @)I + B (P) sh r P B) (14 I 

3cb = (4ni)+ [lnh,h,] fL, x, = (4ni)+ [In &A;‘] fL (3.2) 
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where a is an arbitrary point on L. 
It is verified directly that the functions In A(t) and e ft} satisfy the Halder condition 

in the neighborhood of infinity, including at the point itself. Since xc =I 0, the additi- 

onal analysis which we mentioned above is to verify compliance with the relationships 

[II : s p-1 [f (t)~-‘/~~ (q at = 0 (a = i,. . . I 7) 
L 

(3.3) 

Here y is the greatest of the integers such that the quantity 2y -I- ‘i does not exceed 
the degree of the polynomial f (p). 

In all the diagrams considered, except diagrams 2, 21,X2, the degree of the polyno- 
mial f b) equals two, and compliance with rela~o~hi~ of the form (3.8) is not requi- 

red. For diagrams 2, II, _ZZ the corresponding degree is four, and compliance is requ- 
ired with the single relationship 

L [f @)I s -% e (t) dt = 0 (3.4) 

The integrand in (3.4) has no singularities in the strip - ‘1, < Rep < 0, where the con- 
tour L is located, and tends to zero with infinite growth in the absolute value of p in 
this strip. The equality (3.4) is verified directly on the imaginary axis, and hence it is 
valid for any contour L in the strip mentioned. 

Letting the quantity 6, tend to zero just as has been done in [ 11, we obtain the foll- 

owing formulas for all the diagrams except 2, 11, 12: 

a (p) _ f: 1 f-“;!‘;l; y” dz 

In place of (3.6) we have for diagrams 2, 11, 12 

p (p} = .$ i ‘-‘;f;l;,, & 

d 

(3.6) 

(3.7) 

From (3.2). (3.5) - (3. ‘7) we have [ 11 

Rep>% x (p) = pXf*)-z (p) (3.8) 

where the superscript (*) means the transposed matrix. 
The following asymptotic dependences, valid for Iarge p, result from (3.2) and (3.5) 

- (3.7) : 
Rep>% X (p) - p”Js Q cos q sin q 

Rep<% X (p) - - ip’l?Q ’ Q=l - sin q co9 q II (3.9) 

Here the quantity q is given for all diagrams except 2, 11, 12 by the formula 

sin 81 Q=---- 7L [ f-l” (iz) e (iz) dz (3.10) 
0 

and for diagrams 2, 11, 12 by 
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ql 

tw e1 
9=-y-- 5 izf+ (ia) e (ir) dz 

0 

(3.11) 

In all cases it is verified directly that the quantity p is real 

The solution of the inhomegeneous Hilbert problem (1.12) is given by the formula rZ] 

x (p) cp ($4 = - - ix- (qj-’ CT- (t) dl 
2ni c 

i 
t----P 

Because of the complete identity between (3.8), (3.9) and (3.12) and the ~orres~nding 

formulas obtained in [l] in the analysis of diagramsI, 5, 6, let us present the fundamen- 

tal dependences for the stress intensity vector and the dislocation vector, whose deriva- 
tion is given in 111. 

~signating the stress intensity vector by n two-dimensional vectors with normal and 
tangential stress intensity coefficients as components, we obtain 

(3.13) 

r; [X4 {t) I-’ Gik (t; el, es) dt (3.G) 
L 

Here N (I”,,) and &f (ra) are 2 x 2 matrices, the former of which is the matrix Green’s 

function for the stress intensity vector. 

The two-dimensional dislocation vector u (r), whose components are the normai and 

tangential divergences of the notch edges, is given by the formula 

Here v(r, rO) is a 2 x 2 matrix which is the matrix Green’s function of mutual displa- 
cements of the notch edges and is defined by the relationship 

f ETA (I‘, rO) = - t t-i~(“) {r%) N @&) do = - { $?M”” (r@ n/p (r&) @ (3.46) 
i 1 

Simple approximate formulas can be obtained in each of the f~damental diagrams 

for the calculation of the matrix function M fr,) , completely analogously to that which 

has been done in El] in application to diagrams I, 5, 6 . 
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